

Loes van Hove

Martijn Ouwehand

Mathematician Project leader

Bumblebee lover

- L.C.vanHove@tudelft.nl
- https://www.linkedin.com/in/loes-van-hove-042a99109/

Open Education adviser Project Manager Education Innovation

Outdoor enthousiast

- G.M.Ouwehand@tudelft.nl
 - https://www.linkedin.com/in/martijnouwehand/
 - https://twitter.com/Gouwehand

The team

After this session

- You have discussed what challenges come with writing an open book and how to tackle them

Program

5' - Check-in

5' - 10' About our project

10' x 3 Challenges

5' Check-out + Questions

Check-in:

Your name +
Why are you here? +
Something specific you would like
to get out of this session? +

How experienced are you? (scale 1-5)

Publication process

Timeline of our project

Timeline of our project

boek/

Question:

Do we need a printed version of the open, online book we create?

Do we need a printed version of the open, online book we create?

Yes No

What we learned:

Open Education
As accessible and inclusive as possible

Challenge: Tone of voice

Professional translator: Adjust all chapters to the same language

Every Chapter its own tone of voice

Outcome:

Each paragraph will have their own tone of voice

How to create cohesion?

- Lay-out
- Structure
- Notation
- Images
- Mathematical language (ie injectivity + surjectivity instead of one-to-one + onto)

Challenge:

Creating an open book vs adopting a commercial book

Challenge: WHY DIY? Why not a commercial book?

- Form groups: 3-4 per group
- Discuss pro's and cons of DIY vs commercial solutions
- Write pro's and cons on flipover
- Discuss plenary

Our considerations

- Tailored approach
- Flexibillity
 - For reader
 - For faculties (1 book to rule them all)
 - For teaching staff to mix & match content and integrate content from external resources
- Keeping up to date and connected to TU Delft programmes and initiatives (i.e. MOOCs) one body of knowledge
- Integration with tools to practice already used on campus (integral/seemless learning experience)
- Open for reuse by others
- Open to feedback from others
- Cost reductions for students (after investment)

Other challenges
Finding a suitable platform (LaTeX-friendly) → LibreTexts
Interactive exercises → Grasple
Finding TIME

3 - Orthogonality

In \mathbb{R}^2 and \mathbb{R}^3 the dot product gives an easy way to check whether two vectors are perpendicular:

$$\mathbf{v} \perp \mathbf{w} \Longleftrightarrow \mathbf{v} \cdot \mathbf{w} = 0.$$

We use this identity to define the concept of perpendicularity in \mathbb{R}^n . It seems a bit `academic', but in this more general setting the terms are the concept of perpendicularity in \mathbb{R}^n .

Definition 6

Two vectors ${\bf v}$ and ${\bf w}$ in \mathbb{R}^n are called *orthogonal* if ${\bf v}\cdot{\bf w}=0$. As before, we denote this by ${\bf v}\perp{\bf w}$.

✓ Example 7

Let
$$\mathbf{u}=\begin{bmatrix}1\\2\\-1\\-1\end{bmatrix}$$
 , $\mathbf{v}=\begin{bmatrix}3\\-1\\2\\-1\end{bmatrix}$, $\mathbf{w}=\begin{bmatrix}2\\2\\-1\\2\end{bmatrix}$. We compute

$$\mathbf{u} \cdot \mathbf{v} = 3 - 2 - 2 + 1 = 0$$

$$\mathbf{u} \cdot \mathbf{w} = 2 + 4 + 1 - 2 = 5,$$

$$\mathbf{v} \cdot \mathbf{w} = 6 - 2 - 2 - 2 = 0,$$

and conclude: \mathbf{u} and \mathbf{v} are orthogonal, \mathbf{u} and \mathbf{w} are not orthogonal, \mathbf{v} and \mathbf{w} are orthogonal. In \mathbb{R}^2 , two nonzero vectors that are orthogonal to automatically multiples of each other (i.e. have either the same or the opposite direction). In \mathbb{R}^n with $n \geq 3$ this no longer holds. In this example vector \mathbf{w} are orthogonal to the vector \mathbf{c} , but $\mathbf{u} \neq c\mathbf{w}$.

By definition the zero vector is orthogonal to any vector, since $\mathbf{0} \cdot \mathbf{v} = 0$. Moreover, the zero vector is the *only* vector that is orthogonal

Figure 6. Projection of a vector \mathbf{w} onto a non-zero vector \mathbf{v}

Proposition 11

In the definition above the vector $\hat{\mathbf{w}}$ with these properties is unique and it is given by

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{w}) = \hat{\mathbf{w}} = \frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$

Skip/Read the proof

Proof

With the rules of the dot product the vector \mathbf{w} is easily constructed: Starting from

$$\hat{\mathbf{w}} = t\mathbf{v}, \text{ for some } t \in \mathbb{R}$$

and

$$(\mathbf{w} - \hat{\mathbf{w}}) \perp \mathbf{v}$$

it follows that we must have

$$(\mathbf{w} - t\mathbf{v}) \cdot \mathbf{v} = \mathbf{w} \cdot \mathbf{v} - t(\mathbf{v} \cdot \mathbf{v}) = 0$$

What did you take away from this session?

Questions?

Loes van Hove

Martijn Ouwehand

Mathematician Project leader

Bumblebee lover

- L.C.vanHove@tudelft.nl
- https://www.linkedin.com/in/loes-van-hove-042a99109/

- Open Education adviser Project Manager Education Innovation
- Outdoor enthousiast

- G.M.Ouwehand@tudelft.nl
 - https://www.linkedin.com/in/martijnouwehand/
 - https://twitter.com/Gouwehand

